

BALANCE 3D Habitat mapping

Kerstin Geitner,

Stefan Neuenfeldt

BALANCE Conference

25-26 October 2007 Copenhagen, Denmark

Danish Institute for Fisheries Research, Technical University of Denmark, Charlottenlund Castle, DK-2920 Charlottenlund, Denmark. Contact address: kjg@difres.dk Denmark Estonia Finland Germany Latvia Lithuania Norway Poland Sweden

Why is this important?

Planning of closures in space and time

Understanding how climatic changes force fish dispersal

Introduction

- 1) The Baltic cod decline, topography, stratification and inflows
- 2) Fish dispersion in relation to salinity, temperature and oxygen
- 3) 2D mapping
- 4) From 2D to 3D
- 5) 3D time series
- 6) Conclusions

Baltic cod in decline

weak

The Baltic – Topography, vertical stratification and inflows

Q is a relative measure that ranges between 0 (k=5 days, S=17 PSU) and 100 (k=30 days, S=24 PSU). The graph is from Matthäus (1993). Additional inflows in 1994 and 2003.

Fish dispersion - acoustics

Stn 20

Fish dispersion - Trawl survey catches

Fish dispersion – vertical modelling

2D mapping - ICES CTD stations 1994 to 2005

Stations suitable for cod egg survival

2D mapping – Cod eggs and larvae

Geitner et al., this conference

From 2D to 3D - ICES CTD stations 1994 to 2005

From 2D to 3D - ICES CTD stations Oxygen<2ml/l

From 2D to 3D - ICES CTD stations salinity<11 ppt

From 2D to 3D - ICES CTD stations Oxygen>2 ml/l, salinity<11 ppt

suitable for cod eggs reproductive volume

From 2D to 3D – reproductive volume

Bornholm Basin of the Baltic Sea ICES CTD stations - Cod Egg Habitat Temperature > 1.5 °C, Salinity > 11 PSU, Oxygen > 2 ml/l 1994 - 2005

3D time series - Hydrodynamic model output

3D time series - Cod egg habitat 2003

Baltic Sea Region

Bornholm Basin of the Baltic Sea Hydrographical Model Data - Cod Egg Habitat

Bornholm Basin of the Baltic Sea Hydrographical Model Data - Cod Egg Habitat

Baltic Sea Region

3D time series - Cod spawning habitat volume

Conclusions & perspectives

Key messages

Cod spawning habitat and reproductive volume are very dynamic

Cod spawning habitat and reproductive volume respond to environmental changes

Perspectives

The hydrographic situation in spring may be used to predict Baltic cod reproductive volume in summer.

Acknowledgements

The results presented were funded by BALANCE

BALANCE is part-financed by the European Union (European Regional Development Fund) within the BSR INTERREG IIIB Programme

The following persons and institutions have contributed:

- ► Gerd Kraus (DIFRES)
- ► Thomas Kirk Sørensen (DIFRES)
- ► Ole Vestergaard (DIFRES)
- ► Jonna Tomkiewicz (DIFRES)
- Rasmus Borgstrøm (DIFRES)
- ► Andreas Espersen (DIFRES)
- ► Hjalte Parner (DIFRES)
- ► Hans-Harald Hinrichsen (IFM-Geomar)
- ► Wlodek Grygiel (SFI)
- Rainer Oberst Federal Research Centre for Fisheries (Germany)

Thank you for your attention

